skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doppa, Janardhan Rao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 16, 2026
  2. Free, publicly-accessible full text available June 23, 2026
  3. Free, publicly-accessible full text available March 31, 2026
  4. Wearable devices are being increasingly used in high-impact health applications including vital sign monitoring, rehabilitation, and movement disorders. Wearable health monitoring can aid in the United Nations social development goal of healthy lives by enabling early warning, risk reduction, and management of health risks. Health tasks on wearable devices employ multiple sensors to collect relevant parameters of user’s health and make decisions using machine learning (ML) algorithms. The ML algorithms assume that data from all sensors are available for the health monitoring tasks. However, the applications may encounter missing or incomplete data due to user error, energy limitations, or sensor malfunction. Missing data results in significant loss of accuracy and quality of service. This paper presents a novel Classifier-Aware iMputation (CAM) approach to impute missing data such that classifier accuracy for health tasks is not affected. Specifically, CAM employs unsupervised clustering followed by a principled search algorithm to uncover imputation patterns that maintain high accuracy. Evaluations on seven diverse health tasks show that CAM achieves accuracy within 5% of the baseline with no missing data when one sensor is missing. CAM also achieves significantly higher accuracy compared to generative approaches with negligible energy overhead, making it suitable for wide range of wearable applications. 
    more » « less
  5. We consider the problem of multi-objective optimization (MOO) of expensive black-box functions with the goal of discovering high-quality and diverse Pareto fronts where we are allowed to evaluate a batch of inputs. This problem arises in many real-world applications including penicillin production where diversity of solutions is critical. We solve this problem in the framework of Bayesian optimization (BO) and propose a novel approach referred to as Pareto front-Diverse Batch Multi-Objective BO (PDBO). PDBO tackles two important challenges: 1) How to automatically select the best acquisition function in each BO iteration, and 2) How to select a diverse batch of inputs by considering multiple objectives. We propose principled solutions to address these two challenges. First, PDBO employs a multi-armed bandit approach to select one acquisition function from a given library. We solve a cheap MOO problem by assigning the selected acquisition function for each expensive objective function to obtain a candidate set of inputs for evaluation. Second, it utilizes Determinantal Point Processes (DPPs) to choose a Pareto-front-diverse batch of inputs for evaluation from the candidate set obtained from the first step. The key parameters for the methods behind these two steps are updated after each round of function evaluations. Experiments on multiple MOO benchmarks demonstrate that PDBO outperforms prior methods in terms of both the quality and diversity of Pareto solutions. 
    more » « less
  6. Offline optimization is an emerging problem in many experimental engineering domains including protein, drug or aircraft design, where online experimentation to collect evaluation data is too expensive or dangerous. To avoid that, one has to optimize an unknown function given only its offline evaluation at a fixed set of inputs. A naive solution to this problem is to learn a surrogate model of the unknown function and optimize this surrogate instead. However, such a naive optimizer is prone to erroneous overestimation of the surrogate (possibly due to over-fitting on a biased sample of function evaluation) on inputs outside the offline dataset. Prior approaches addressing this challenge have primarily focused on learning robust surrogate models. However, their search strategies are derived from the surrogate model rather than the actual offline data. To fill this important gap, we introduce a new learning-to-search perspective for offline optimization by reformulating it as an offline reinforcement learning problem. Our proposed policy-guided gradient search approach explicitly learns the best policy for a given surrogate model created from the offline data. Our empirical results on multiple benchmarks demonstrate that the learned optimization policy can be combined with existing offline surrogates to significantly improve the optimization performance. 
    more » « less